High Resolution Site Characterization – HPT Groundwater Sampling System

Running HPT logs in the Platte River alluvial aquifer, Clarks, NE.

Daniel Caputo (dcaputo@vironex.com)

Vironex, Inc.

Core Services - Driller \rightarrow Injection \rightarrow HRSC \rightarrow Search & DestroyTM

• Direct Push

- Sampling (Groundwater, Soil, Vapor)
- Well Installation (Pre-pack and Auger)

Advanced Site Characterization

- HRSC Probes targeting hydro/lithologic properties
- HRSC systems for highly resolved contaminant profiling
- HRSC 3D Modeling

Injection/Remediation Services

- Chemically Compatible Equipment to Inject all ISCO, ISCR and Bioremediation Amendments
- Experience in all Lithologies (including Bedrock)
- In Situ Mixing
- Extraction/Injection Systems

Presentation Outline

- HPT Principles of Operation
- Equipment Needed and Logging Technique
- Interpreting an HPT log
- HPT Log Cross Section and Hydrostratigraphy
- Dissipation Tests ... How and Why?
- Estimating Hydraulic Conductivity (K) with Q & P_c
- HPT-GW Sampler

HPT Principles of Operation

- A) Water Tank
- B) Pump & Flow Meter
- C) Electronics/computer
- D) Trunkline
- E) Pressure Sensor
- F) Screened Injection Port
- G) Elec. Conductivity Array

How Much Injection Flow ?

300 ml/min = ? ml/sec

How much per log?

How Much Injection Flow ?

300 ml/min X 1min/60sec

= 5 ml/sec

Advance probe at 2 cm/sec So Inject 5 ml over 2 cm ~ 75 ml/ft of log

Reality ~ 5 gal (20 l) for 60ft log

Example HPT Log

- EC
- Pressure
- Flow

Components of the HPT System : HPT Probe

HPT System Components: Electronics

- Laptop Computer (with Acquisition software)
- Field Instrument (FI 6000)
- HPT Flow Module (K 6300)

Running an HPT Log and Field QA/QC

EC Test Load Used to Verify EC System is Working

Before Every Log Run QA Tests

Pre-Log QA: EC Test Load

Electrical Conductivity Onscreen QA Report (data saved to log file)

Pre-Log QA: HPT Reference Test

		Start New Log		×		
HPT Refe	rence Test					
	Flow (mL/min)	HPT (psi)				
Bottom	298.4	13.176	capture			
Тор	299.6	13.377	capture	HPT Press. (psi)		
Δ	1.2	0.201		12.762		
Тор	0.0	12.989	capture	HPT Flow (mL/min)		
 Bottom 	0.0	12.759	capture	0.0		
Δ	0.0	0.230	PASS	Clear Tests		
No-Flow HPT Δ Target: 0.22 psi ± 10%						
Cancel < Back Next > Finish						

HPT Pressure Transducer Onscreen QA Report (data saved to log file)

HPT Probe in Reference Tube to Verify Measurement of $\Delta 6''$ (15cm) of Water Pressure = 0.22 psi (1.52kPa)

IF YOU DON'T DO THE QA TEST DON'T RUN THE LOG !

Running an HPT Log : Advancing the Probe

Data Users can use DI Viewer Software to open single HPT logs, cross sections of logs, etc.

Comprobe Systems ENVIRONMENTAL · GEOTECHNICAL · GEOTHERMAL · EXPLORATION HOME PRODUCTS	SUPPORT CONTACT US	
Direct Image Viewer 1.6	Direct Image [®]	
Version: 1.6 Build: 13031 Release Date: Fri, 02/01/2013 File Size: 2.58 MB	EC	
Click to Download: Direct Image Viewer 1.6	MIP	
Click to Download. Direct image viewer 1.6	LL MIP	
What is Geoprobe [®] Direct Image [®] Viewer?	MiHpt	
Automatically opens and displays all types of Geoprobe [®] -DI Logs including	НРТ	
EC, HPT, MIP, MIHPT, and HPT-GW.	HPT-GWS	
✓ Used by field operators to QC finish logs in the field.	CPT	
Used by consultants, regulators, and site owners to compare logs and develop site models	PST	÷

The DI Viewer software is available as a free download at: http://geoprobe.com/downloads/direct-image-viewer-16

A Basic HPT Log & Interpretation

Basic Interpretation Rules

HPT Pressure (all formations)

• Increasing P = decreasing permeability

• Decreasing P = increasing permeability

Basic Interpretation Rules

Electrical Conductivity (EC) (*in fresh water formations*)

• Increasing EC = increasing clay content = lower permeability

lower EC = coarser grained
 = higher permeability

Basic Interpretation Rules

Electrical Conductivity (EC) • Exceptions ! • Low EC but High Pressure • Silts & cementing • Not all clays = high EC • High EC can exhibit low HPT pressure Seawater • Oilfield brine = high EC • Ionic remediation fluids (ionic compounds)

Hydrostratigraphy with HPT Pressure Cross Section

West

Facing North: 50 ft spacing between log locations: alluvial deposits

HPT Press. Avg

East

Hydrostratigraphy ... Water Supply Well Placement

West

Facing North: 50 ft spacing between log locations: alluvial deposits

HPT Press. Avg

East

Hydrostratigraphy ... Aquifer Boundaries

West

Our Hypothetical Dry Cleaner Site ...

Hydrostratigraphy ... Groundwater PCE Plume

West

East

Hydrostratigraphy ... Groundwater PCE Plume

West

Aquifer Boundaries

Hydrostratigraphy ... Groundwater PCE Plume

West

Aquifer Boundaries

Hydrostatic Pressure, Dissipation Tests, Water Levels & More

Dissipation Tests allow for the applied pressure to the formation to dissipate to equilibrium

Dissipation Tests Needed to Determine:

- Water Level
- Hydrostatic Pressure
- Corrected HPT Pressure
- Est. Hydraulic Conductivity

Hydrostatic Pressure:

- 2.31 ft of water = 1 psi
- 0.433 psi/ft water

Hydrostatic Pressure, Dissipation Tests, Water Levels & More

To Run a Dissipation Test ...

Is Slope of the Hydrostatic Pressure Line Correct?

 $\frac{21.971 - 20.036 \text{ psi}}{44.0 - 39.5 \text{ ft}} = \frac{1.935 \text{ psi}}{4.5 \text{ ft}} = 0.430 \text{ psi/ft} = \text{hydrostatic pressure slope}$

(for a water table aquifer)

Fully Dissipated Tests = Good Hydrostatic Pressure Line and Water level

Corrected HPT Pressure

Corrected HPT Pressure

At each depth increment: Corrected HPT Pressure = Total HPT Pressure – (Atm. Pressure + Hydrostatic Pressure)

Is Your Dissipation Test Fully Dissipated ?

Examples of Unsuccessful Dissipation Tests

Incomplete Dissipation Tests ...

... result in incorrect hydrostatic pressure lines (slope), incorrect static water levels and incorrect corrected pressure graphs ...

Estimating Hydraulic Conductivity (K) with HPT Log Data

From Darcy's Law:

Hydraulic Conductivity (K) = f(Q/P)

HPT logs provide both:

Corrected Pressure (P_c)

And Flow Rate (Q)

Estimating K with HPT Q and P_c Data

Empirical Model developed from colocated slug tests and HPT logs to calculate K from Q/P_c ratio.

Performing a Pneumatic Slug Test

Study area next to cottonwood tree

Multi-Level Discrete Interval Slug Tests

$$K = f(Q/Pc)$$

Empirical Model for Estimating K with HPT Q & P_c

Estimated K with the DI Viewer Software

HPT – Groundwater Sampler

- Same principal of operation as HPT
- Increased Flow to 400 mL/min
- 4 injection ports
- Produces an HPT log similar to the standard tool
- The system is connected to pump/tubing for sample collection
- Bladder or Peristaltic Pumps are used for sampling.

HPT-GWS Log

Maxton, North Carolina

Sample collected at each black triangle

HPT – Groundwater Sampler Benefits

- Collect a large data set in one push lithology (EC), permeability (HPT), and analytical data (sampler)
- Collect groundwater samples at multiple depths in one push
- HPT pressure and EC data can be utilized to select sampling intervals
- Samples collected from precise intervals

 about 4 inches

HPT – Groundwater Sampler Limitations

- Larger Tool 2.25" tool and rod may limit depth over the standard 1.75" tooling
- Samples must be collected from permeable zones
- Decontamination limitations
- 2x the time per boring as standard HPT (dependent on # of samples and sampling procedures)

MIP and HPT or MiHPT

Summary

- HPT Principles of Operation
- Equipment Required for Logging
- Basics of HPT Log Interpretation
- Making a Cross Section with HPT Logs
- Interpreting Hydrostratigraphy with HPT

Summary

- Dissipation Tests, Hydrostatic Pressure & Water Levels
- Correcting HPT Pressure (Pc)
- Estimating Hydraulic Conductivity from Pc and Q
- HPT- GWS Tool Uses and Limitations
- •MiHPT

Acknowledgments

Wes McCall and Geoprobe Systems

Questions and Answers ...

To learn more about Vironex' Services and Geoprobe's Direct Image systems like MIP, MiHpt, Low Level MIP, EC, CPT and PST check out these links:

http://www.vironex.com/Services/HighResolutionSiteCharacterization
.aspx

http://geoprobe.com/geoprobe-systems-direct-image-products